Asymptotic expansion of $\int\sp {\pi/2}\sb 0J\sp 2\sb \nu(\lambda\,{\rm cos}\,\theta)\,d\theta$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive Parameter Estimation: Asymptotic expansion

This paper is concerned with the asymptotic behaviour of estimation procedures which are recursive in the sense that each successive estimator is obtained from the previous one by a simple adjustment. The results of the paper can be used to determine the form of the recursive procedure which is expected to have the same asymptotic properties as the corresponding nonrecursive one defined as a so...

متن کامل

Asymptotic Expansion Approach in Finance

This paper provides a survey on an asymptotic expansion approach to valuation and hedging problems in finance. The asymptotic expansion is a widely applicable methodology for analytical approximations of expectations of certain Wiener functionals. Hence not only academic researchers but also practitioners have been applying the scheme to a variety of problems in finance such as pricing and hedg...

متن کامل

Approximation of Asymptotic Expansion of Wavelets

1. Wong, R., Asymptotic Approximations of Integrals, Academic Press, New York (1989). 2. W. Sweldens and R. Pensiess, Quadrature formulae and asymptotic error expansions for wavelet approximation,of smooth function,Siam J. Numei. Anal.Vol. 31, No. 4, pp. 12401264, August 1994. 3. R.S.Pathak and A. Pathak, Asymptotic Expansion of the Wavelet transform with error term World Scientific(2009),ISBN:...

متن کامل

Asymptotic Expansion of a Series of Ramanujan

An asymptotic expansion is given for the series n)"*' as x-»oo in the sector |Argx|g7t/2-<5. Here <5, Re(a), and Re(s) are positive and r is a positive integer. In the case a = r = s = 1, this yields the nontrivial result »=, k 2 {l+x/k) k stated by Ramanujan in his notebooks [6]. 1980 Mathematics subject classification (1985 Revision). 41A60.

متن کامل

On the Asymptotic Expansion of Bergman Kernel

We study the asymptotic of the Bergman kernel of the spin Dirac operator on high tensor powers of a line bundle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1988

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1988-0917830-2